23. Prove that (a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)

Er Chandra Bhushan
0

 23. Prove that (a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)

(a+b+c)³ - a³ - b³ - c³

= [(a+b+c)³ - a³] - [b³ + c³]

= [(a+b+c-a)((a+b+c)² + a(a+b+c) + a²)] - [(b+c)(b² - bc + c²)]

= [(b+c)(a² + b² + c² + 2ab + 2bc + 2ca + a² + ab + ac + a²)] - [(b+c)(b² - bc + c²)]

= (b+c)[3a² + 3ab + 3ac + 3bc]

= 3(b+c)[a(a+b) + c(a+b)]

= 3(b+c)(a+b)(a+c)

= 3(a+b)(b+c)(c+a)

अतः, (a+b+c)³ - a³ - b³ - c³ = 3(a+b)(b+c)(c+a) सिद्ध हुआ।

Post a Comment

0 Comments
Post a Comment (0)
Our website uses cookies to enhance your experience. Learn More
Accept !